
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Dynamic Conditional Imitation Learning for
Autonomous Driving

Hesham M. Eraqi1,2, Mohamed N. Moustafa1, and Jens Honer2

Abstract—Conditional imitation learning (CIL) trains deep
neural networks, in an end-to-end manner, to mimic human
driving. This approach has demonstrated suitable vehicle control
when following roads, avoiding obstacles, or taking specific
turns in intersections to reach a destination. Unfortunately,
performance dramatically decreases when deployed to unseen
environments and is inconsistent against varying weather con-
ditions. Most importantly, the current CIL fails to avoid static
road blockages. In this work, we propose a solution to those
deficiencies. First, we fuse the laser scanner with the regular
camera streams, at the features level, to overcome the gener-
alization and consistency challenges. Second, we introduce a
new efficient Occupancy Grid Mapping (OGM) method along
with new algorithms for road blockages avoidance and global
route planning. Consequently, our proposed method dynamically
detects partial and full road blockages, and guides the controlled
vehicle to another route to reach the destination. Following the
original CIL work, we demonstrated the effectiveness of our
proposal on CARLA simulator urban driving benchmark. Our
experiments showed that our model improved consistency against
weather conditions by four times and autonomous driving success
rate generalization by 52%. Furthermore, our global route
planner improved the driving success rate by 37%. Our proposed
road blockages avoidance algorithm improved the driving success
rate by 27%. Finally, the average kilometers traveled before a
collision with a static object increased by 1.5 times.

Index Terms—Autonomous Driving, Occupancy Grid Map-
ping, Conditional Imitation Learning, Sensor Fusion, Road
Blockages Avoidance

I. INTRODUCTION

DESPITE the recent advances to achieve the promising
vision of autonomous driving in terms of significantly re-

ducing accidents [47] and congestion [6], while being environ-
mentally and economically beneficial [17], it is safe to believe
that fully autonomous navigation in complex environments
is still decades away [31] [27] [21]. Autonomous vehicles
employ a “sense-plan-act” design which is the basis of many
robotic systems. Advanced forms of LiDAR (laser scanner, an
acronym of Light Detection And Ranging), radar, and inertial
measurement allowed for a more accurate and quicker sensing
of the environment and surrounding objects. Nevertheless,
many open challenges remain yet to be fully solved in:
1) planning the vehicle’s actions based on understating the
driving scene and the interaction between its elements given
the sensed data and 2) eventually commanding the vehicle’s

1Hesham M. Eraqi and Mohamed N. Moustafa are with Computer Science
and Engineering Department, The American University in Cairo, Egypt, e-
mails: heraqi@aucegypt.edu, m.moustafa@aucegypt.edu.

2Jens Honer and Hesham M. Eraqi are with Driving Assistance
department, Valeo Schalter und Sensoren GmbH, Germany, emails:
jens.honer@valeo.com, hesham.eraqi@valeo.com.

A topological map (white cells
are roads) showing the

planned route (orange dots)
before detecting the partial

blockage

The route blockage
avoidance algorithm guides
the vehicle to a new route

Blockage

Detected

Source

Destination

Current Position

Planned Route

Blockage Detected

Obstacles

(2) Planner selects
alternate route

(1) Blocked lane detected along
the shortest route to destination

(a)

(b)

Fig. 1. Partial road blockages added to CARLA simulator, the road blockages
avoidance algorithm detects them and guides the vehicle to another route to
reach the destination as demonstrated in (A), while in (B) the partial blockage
is in another lane.

control system steering, throttle, and brakes. The algorithmic
pipeline includes tasks such as mapping, localization, driving
scene perception, motion planning, and trajectory optimization
which are full of open challenges [24] including requiring ex-
pensive data annotation, relying on heuristics and handcrafted
rule-based modules, and the potential of adding unnecessary
complexity to the problem. Therefore, researchers turned to
train end-to-end deep neural networks to directly learn the
mapping from front-facing camera data stream to driving
commands.

Recently, there has been an increasing amount of literature
adopting the end-to-end approach [4] [20]. Such systems are
demonstrated suitable when following roads and avoiding
obstacles. The conditional imitation learning (CIL) method
[12] upgraded the end-to-end approach by allowing the vehicle
to be automatically guided at test time to take a specific turn at
an upcoming intersection to reach the destination. The model
conditions imitation learning on a high-level navigational
command input received from a global route planner, just
as mapping applications, that instructs the model to control
the vehicle to take a specific turn, go straight through an
intersection, or follow lane. In [14], CARLA urban driving
benchmark is adopted to benchmark the CIL model [12]
against other approaches to autonomous driving. CARLA [14]
is a widely used open-source simulator for autonomous car
development focused on creating realistic virtual environments
for the automotive industry. Many contributors constantly

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

improve it, which makes it a comprehensive tool for simulating
real-world scenarios. The benchmark results demonstrated that
the CIL model is responsive to the high-level navigational
commands and drives efficiently when tested on the same
training environments. However, performance is found incon-
sistent against varying weather conditions and significantly
decreases when tested on environments that are unseen during
the model training. Generalization from one town’s road layout
and environment domains (represented by e.g. different texture
sets) to other towns is a concern. Most importantly, the CIL
method cannot avoid road unexpected temporary stationary
blockages, as work zones in figure 1, which are ever-increasing
in number on world roads [50]. Such road blockages should
be detected and the global route planner should dynamically
estimate and guide the vehicle to a new route towards the
destination accordingly. The aim of this work is to address two
main issues of the CIL method: 1) lack of generalization to
new environments and inconsistency against varying weather
conditions and 2) failure to avoid static road blockages.

The contribution of this paper is two-fold. First, we provide
a novel architecture that aims to tackle the CIL model [12]
challenges of lack of generalization and inconsistency against
varying weathers, by extending it via fusing a LiDAR sensor
input with the camera. Camera and LiDAR are primary sensor
modalities for autonomous driving to capture environment se-
mantic and geometric information respectively. The strengths
of each sensor can compensate for the weaknesses of the other.
The accurate LiDAR range information resolves the camera
depth perception ambiguity, while the camera’s dense angular
resolution compensates for LiDAR sparsity. LiDAR also is
less sensitive to ambient lighting [32]. The proposed model
in this work aims to tackle the CIL model [12] challenges
of lack of generalization and inconsistency against varying
weathers, by extending it via fusing a LiDAR sensor input with
the camera. On CARLA simulator urban driving benchmark
[14], the proposed model improved the autonomous driving
success rate in towns unseen during the training by 52% and
improved weather consistency by 3.9 times. It outperforms
the CIL model in all the different combinations of tasks and
environmental setups while being trained on driving traces
recorded automatically.

Our second contribution is a new efficient Occupancy Grid
Mapping (OGM) method that inspired from a part of our
patent in [23] and used in new road blockages avoidance
and topological global route planning algorithms. Detailed
knowledge about the environment is useful for autonomous
driving. A versatile approach to this task is to use OGM [16] to
generate a map from noisy and uncertain sensor measurements.
The road blockages avoidance and route planning algorithms
allow the vehicle to detect unexpected road closures and to
dynamically estimate a new shortest route accordingly in order
to reach the destination while avoiding closed lanes or roads.
Additionally, the OGM is used to rectify the proposed model
output to reduce the chances of driving on the sidewalk. On
CARLA benchmark [14], the proposed global route planner
method improved the driving success rate by 37% by providing
more accurate navigational commands. The CARLA simulator
and benchmark are upgraded to support testing navigation

while having unexpected temporary stationary road blockages,
and our road blockages avoidance algorithm improved the
driving success rate by 27% and reduced infractions with static
objects by 1.5 times.

II. RELATED WORK

The mediated perception approaches [31] [14] for au-
tonomous driving involve sub-components for detecting
driving-relevant objects [25] (as cars [26], pedestrians [38],
lanes’ markings [34], or more objects), tracking of driving
scene objects [8], motion planning [30], drivable free space
detection [40] [19], collision avoidance [18], mapping [48],
and more models. Then the results from these sub-components
are then combined in a rule-based module that produces
vehicle driving actions [14]. Such mediated perception ap-
proach relies on scene understanding [25] on a level that
might add redundant information and unnecessary complexity;
a small portion of the detected objects are relevant to driving
decisions. It also requires robust solutions to open challenges
in scene understanding and expensive data annotation [25].
Direct perception [9] is another approach that learns a mapping
from input camera image to several meaningful affordance
indicators of the driving situation, then a rule-based controller
translates them into driving actions. Those indicators are cho-
sen via heuristics and the controller design is as expensive as
the case with the mediated perception rule-based module [49].
Another approach is to learn driving trajectory planning end-
to-end while leaving the vehicle control component outside
the end-to-end trained module [2] [7].

As an alternative to the mediated perception approach, the
end-to-end imitation learning approach directly maps input
sensory data to driving actions via deep machine learn-
ing regression [4] [20] [31] [5]. Such behavior reflex ap-
proach optimizes the aforementioned autonomous driving sub-
components simultaneously, the system self-optimizes aiming
to maximize overall system performance. Unlike in the me-
diated perception approach, optimizing human-selected inter-
mediate criteria doesn’t guarantee maximizing overall system
performance, because such criteria are selected to ease human
interpretation [4]. The major drawback of the end-to-end
learning approach is that the vehicle cannot be guided to take
a specific turn at an upcoming intersection. The CIL model
[14] [12] overcomes the end-to-end approach such a limitation
by training, on top of a perception Convolutional Neural Net-
work (CNN), multiple different command-conditional modules
(”branches”) predicting driving commands for each possible
navigational command. A topological global route planner
is used to estimate a sparse list of waypoints towards the
destination and based on it, the navigational command is
determined for each waypoint. Based on the navigational
command received from the global route planner, the proper
branch is selected to control the vehicle in order to reach
the destination. In [40], a hybrid A* search algorithm [13] is
developed to predict a detailed vehicle drivable trajectory to
reach the destination which is more computationally expensive
than the adopted planning method in this work that estimates a
sparse list of waypoints. Similarly, another approach for global

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

planning is based on deep learning [51] which is considerably
more computationally expensive. Another weakness in such a
learning-based planner is that it depends on the structure of
a particular environment where the model is trained on and
requires a semantic map of the environment. To cope with
potential changes in certain regions in the environment, a local
learning-based planner can be added which further increases
the computational demands.

In [14] [12], the CIL model is demonstrated to drive
efficiently when deployed on the same training environments.
However, performance dramatically decreases when deployed
to new environments that are unseen during training time and
is inconsistent against varying weathers. In addition, the CIL
method cannot dynamically detect and handle road unexpected
temporary stationary blockages like for example due to work
zones. Various reasons have led to an ever-increasing number
of road work zones of different looks and shapes even during
demanding traffic levels due to maintenance, construction,
and rehabilitation activities [50]. Autonomous vehicles should
dynamically detect such road blockages and the global route
planner should estimate a new route to the destination as a
result. In Junior car [40], road blockages are avoided using a
drivable free space detection rule-based method. The LiDAR
point cloud is analyzed against predefined thresholds and
a hybrid A* planner was introduced to predict the vehicle
trajectory, which makes such a method not directly compatible
with the approach of learning the driving policy end-to-end.
Moreover, three LiDAR sensors were used to predict a reliable
vehicle trajectory. Table I summarizes the comparison between
mediated perception and end-to-end approaches.

Limitation Mediated
Perception

End-to-
end

Requires robust solutions to open problems in
scene understanding Yes No

Requires rule-based controller Yes No
Heuristics involved Usually No
Adds useless complexity in terms of detected that
are irrelevant to driving decisions Yes No

Machine learning algorithm confusion caused by
similar inputs being associated with different labels No Yes*

Requires expensive training data annotation Yes No
Can’t see the bigger picture of the driving situation No Yes*

* Limitations tackled by the CIL approach
TABLE I

THE ADVANTAGES AND DISADVANTAGES OF THE MEDIATED PERCEPTION
AND END-TO-END APPROACHES FOR AUTONOMOUS DRIVING

The Occupancy Grid Mapping (OGM) algorithm is intro-
duced in [16]. The produced map is represented in a top-view
grayscale image format, where pixel intensities represent the
probability of occupancy given LiDAR point cloud. Within
each grid cell, the occupancy is estimated recursively using
a binary Bayes filter, which creates a history effect that
makes it robust against the problems of missed and false
measurements. The original OGM algorithm [16] assumes
map cells independence, which induces map grid cell con-
flicts that lead to inconsistent maps. To overcome such an
inconsistency problem, a forward model [43] is introduced to
maintain dependencies between neighboring map grid cells.
The algorithm is widely adopted for probabilistic localization

and mapping in robotics [44], existing autonomous vehicles
[40], and vehicle trajectory prediction [35]. Mapping large
roadway environments with a high-resolution OGM can im-
pose prohibitive memory requirements. Existing probabilistic
quadtrees methods [37] provide compact map representations
that significantly reduce the OGM memory footprint, however,
they do not guarantee that the stored mapping information is
utilized for the roadway information that is most important
to the driving situation. This can be achieved by dynamic
vehicle positioning, combined with map management tech-
niques based on 2D ring buffers [41] or twisted torus topology
[29]. Nevertheless, vehicle dynamic positioning results into
map inaccuracies due to the computationally expensive and
inaccurate image sub-pixel shifting and rotation operations to
compensate for ego-vehicle motion.

III. PROPOSED MODEL

Figure 2 introduces our proposed network architecture. The
network is end-to-end trainable, given input sensory data,
the vehicle driving commands are predicted, in addition to
predicted vehicle speed. The network receives the high-level
navigational command C as an input, alongside the image
coming from a front-facing camera, LiDAR point cloud, and
a measurements vector. C is a turn command provided by a
global route planner and acts as a switch that selects between
specialized output sub-module branches. The planner should
set C to select the ”follow lane” output branch in case of
the vehicle is far away from road intersections, and during
intersection, it should select the proper branch which could
be to turn left, to turn right, or to go straight, based on the
road layout and the desired destination. We adopt a topolog-
ical global route planner that provides accurate navigational
commands as described later in subsection V-A.

The camera and LiDAR input modalities are processed
independently. The currently observed camera RGB image is
fed into eight convolutional layers, and the associated LiDAR
point cloud is encoded to a grayscale image and it is then
fed into four convolutional layers. The LiDAR point cloud
image follows a Polar Grid View (PGV) representation. As in
figure 2, the currently observed LiDAR point cloud is encoded
to a grayscale image using Polar Grid View representation
(PGV). Figure 3 shows a sample camera RGB image, the cor-
responding LiDAR point cloud full scan top view projection,
and the generated PGV which provides a 2D dense proximity
spherical representation of the environment. Each LiDAR layer
is associated with a PGV row, and each beam is associated
with a single PGV column based on its horizontal angle. A
PGV pixel holds the average depth values for all LiDAR beams
that are associated with it. Such a projection-based method
maps the 3D sparse point cloud into a 2D image representation
that is more dense and compact compared to 3D LiDAR scan
points. Consequently, standard 2D CNN can be leveraged to
process those range images to achieve real-time performance
[11].

We use a ReLU activation function [39] in all hidden layers,
and a linear activation for the output layers. Figure 2 describes
the number of neurons per layer, and for the convolutional

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

.

64

17

3⨯3(1)

8

128

3⨯3(2)

32

14

5⨯5(2)

FC 19

FC 20

256

FC 18

256

Speed

3

88

6

3⨯3(1)

128

2

3⨯3(1)

256
4

3⨯3(1)

256

5⨯5(2)

32

42

32

3⨯3(1)

40
64

3⨯3(2)

19

12

32

3⨯3(1)

64
3

3⨯3(1)

64

5

3⨯3(2)

512

FC 1

512

FC 2 LiDAR
Pointcloud

32

FC 13

FC 14

256

3

FC 12

256

Go Left
Commands

FC 7

FC 8

256

3

FC 6

256

Follow Lane
Commands

FC 16

FC 17

256

3

FC 15

256

Go Straight
Commands

FC 10

FC 11

256

3

FC 9

256

Go Right
Commands

FC 3

128

FC 4

128

Speed FC 5

512

Fig. 2. Proposed Network Architecture

layers describes kernel sizes and the used padding as well.
Batch normalization is applied after all the convolutional
layers, and we apply 50% dropout after fully-connected hidden
layers. For input measurements, we only use the actual vehicle
speed as in [12]. The speed, throttle, and brake values are
scaled between 0 and 1, according to minimum and maximum
possible values. The steering wheel angle is scaled between
−1 and 1, with extreme values corresponding to full left and
full right. The camera RGB images and the LiDAR PGV
images are normalized to be in the range of [0, 1]. For each
output branch, driving actions a are three-dimensional vectors
that include steering wheel angle s, throttle t, and braking
b; a = [s, t, b]. Given ground-truth actions ag and speeds
vg , and predicted actions a and speeds v, the loss function
L is defined as follows: L = λs ‖s− sg‖2 + λt ‖t− tg‖2 +
λb ‖b− bg‖2 + λv ‖v − vg‖2, where λs, λt, λb, and λv are
empirically set to 0.5, 0.2, 0.15, and 0.15 respectively. The
model is trained using Adam optimizer [36] with β1 = 0.7,

(a)

(c)

(b)

Fig. 3. (a) Sample RGB camera image. (b) Corresponding LiDAR point cloud
top view projection. (c) Generated PGV from the LiDAR point cloud. Three
objects are matched in the figures: a vehicle, a bicyclist, and a light pole.

β2 = 0.85, and initial learning rate of 0.0002 that is multiplied
by 0.5 every 10 epochs. We used mini-batches of 120 samples,
where each min-batch has the same number of samples for
each navigational command C. Half of the images in every
mini-batch are augmented as described later in this section.
Figure 4 graph shows the training and validation losses per
epoch.

Fig. 4. Training and validation losses per epoch

The original CIL model is trained on a dataset collected
by a human driver using CARLA simulator, who uses a
signal to record his intent when approaching intersections
[12]. That signal was used as the ground-truth navigational
high-level command. In contrast, our model is trained on data
that is automatically recorded using two different methods.
The first data collection method relies on CARLA simulator
autopilot feature. In each data collection episode, the weather,
traffic and pedestrians density, and vehicle starting position
are randomly chosen. The ego-vehicle purposelessly follows
lane and take random turning decisions in intersections and
avoid obstacles for a predefined time of 10 minutes. After each
episode, the navigational high-level command is generated
by looking-ahead in future frames to determine the turn
the vehicle decided to take. Figure 5 shows the generated
high-level command generated for two sample episodes. In
the second data collection method, we utilize CARLA route

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

(a) Sample episode 1 (b) Sample episode 2

Fig. 5. High-level commands generated for two sample episodes during
training data collection using CARLA autopilot. The red circle represents start
position and the colored trajectory shows the driving path. Colors represent the
command; yellow for ”follow-lane”, blue for ”go left”, green for ”go right”,
and black for ”go straight”. Red crosses represent samples dropped out due
to long traffic stopping.

planner and PID (proportional integral derivative) controllers.
In each episode a random pair of source and destination
are chosen, then CARLA provides navigational waypoints
that the ego-vehicle should follow to reach destination. The
modular pipeline system introduced in [12] is used to follow
waypoints and avoid obstacles while making use of simulator
privileged information. The training town has 2.9 km of
drivable roads. For each data collection method, 200 episodes
are conducted. Each episode has a number of vehicles and
pedestrians uniformly randomly sampled from the the ranges
[30, 60] and [50, 100] respectively.

As in [12], temporally-correlated noise is injected into the
steering during training. The noise simulates gradual drift
away from the desired trajectory, then the vehicle is let to
recover from these perturbations to provide the network with
examples of recovery from unexpected disturbances. During
model training, online data augmentation is applied on half of
the mini-batch images before feeding them to the network.
To augment an image, it is passed through a pipeline of
a sequential series of augmentation methods. Each augmen-
tation method in the pipeline has a predefined probability
of occurrence which defines the percentage of augmented
images having that method existing in their augmentation
pipeline. In addition, each augmentation method has stochastic
parameters to let each image be augmented differently. As
an example, when adding Gaussian noise, for each image
to be augmented, the Gaussian noise variance is sampled
from a parameterized uniform probability distribution. Two
different types of data augmentation methods are adopted.
The first type is for photometric transformations: changing
brightness, lighting conditions, and applying additive white
Gaussian noise and Gaussian blurring [33]. The second type is
for geometric transformations: horizontal flipping. In the case
of horizontal flipping, the sign of the ground-truth steering
wheel angle is flipped as well.

The proposed model is able to drive on two-lane roads (one
traveling in one direction, and one traveling in the opposite
direction) while having intersections and traffic lights. The
training and testing towns of CARLA urban driving bench-
mark [14] do not include multi-lane roads and roundabouts
which are beyond the scope of this study. The model can be
trained to drive on multi-lane roads as the LiDAR 360-degree
field of view can enable for learning lane change maneuvering;

however, the adopted route planner described in subsection
V-A needs to be adapted to support modeling more complex
road networks based on schemes as Lanelets [3] [42] and
OpenDrive [15]. The proposed model is also compatible to
learn to drive through roundabouts as long as the route planner
timely provides the navigational commands required to exit
them.

IV. EFFICIENT OCCUPANCY GRID MAPPING (OGM)

The original OGM algorithm [16] assumes map cells in-
dependence, which induces map grid cell conflicts, because
a single sensor measurement may update several grid cells,
which lead to inconsistent maps [43]. To overcome such
inconsistency problem, a forward model [43] can be used
which produces more accurate OGM by maintaining depen-
dencies between neighboring map grid cells. The forward
model approach uses the Expectation-Maximization algorithm
to build the map and a Laplacian approximation to model
uncertainty. In this work, we introduce a new simpler and
faster way to acquire OGM that preserves map quality by
maintaining dependencies between neighboring map cells. As
in [43], our inverse sensor model handles cells overlapping
multiple measurements issue in [16] by generating maps from
all full scan measurements at once, not incrementally on
single bream measurements. Unlike [43], our method makes
use of unreflected beams (beams with no echo returned),
because they indicate important free space information. Given
full scan measurements and vehicle position, the map grid
cells to be updated can be determined by the convex hull or
the bounding polygon of the full scan measurements. This
approach assumes having dense measurements, which is a
convenient assumption with LiDAR sensors. As shown in
figure 6, both methods produce equivalent maps except for
small parts around unreflected beams areas. Our method is
described in Algorithm 1. Horizontal arrow symbols in the
algorithm description indicate appending to a list. The filter
function removes scan points from ground and dynamic ob-
jects based on 2D camera semantic segmentation [1] projected
into LiDAR 3D space. The function also removes overhanging
objects above a predefined height threshold (the vehicle height
plus a safety buffer), like traffic signs, high tree leaves, and
billboards. To make the algorithm faster, scan points could be
down-sampled systematically by keeping each kth scan point.

Table II compares our OGM method with [43] and [16].
As in [43], our model adopts Bayes filtering in log-odds
representation of the occupancy probabilities incremental com-
position, which is more computationally efficient than [16].
In the Algorithm 1, the position circle function executes our
vehicle positioning method (Algorithm 2) which aims to make
the map incremental composition faster and more accurate
as detailed in subsection IV-A. That method provides better
memory utilization via efficient vehicle positioning in the map
while preserving map accuracy by preventing map rotation and
sub-pixel shifting transformations which introduce cumulative
artifacts to the map.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

Algorithm 1: Proposed Occupancy Grid Map (OGM) method
Input: scans: n× 2 array with full scan n measurements, each

measurement represented by its x and y coordinates
P tw: vehicle position in world coordinates
P t−1
w : previous vehicle position in world coordinates
s: vehicle speed
M : OGM to be updated

Parameters: log oddfree: log odd for free
log oddocc: log odd for occupancy
w: wall (obstacle) depth
α: beam width angle

Output: M : updated OGM

// Transform map and calculate vehicle position and orientation in
map local coordinate system (run Algorithm 2)

1 Plocal,M = position circle(s, P tw, P
t−1
w , Plocal,M)

2 scans = filter(scans)

// Transform to map coordinate system and shift scan points

3 scans = scans.

[
cos(Plocal.yaw) − sin(Plocal.yaw)
sin(Plocal.yaw) cos(Plocal.yaw)

]
4 allocate 2 empty lists angles and distances
5 foreach scan point scani ∈ scans do
6 angles← atan2(scani.y − Plocal.y, scani.x− Plocal.x)
7 scani.x += w. cos(angles[i])
8 scani.y += w. sin(angles[i])
9 distances←√

(scani.x− Plocal.x)2 + (scani.y − Plocal.y)2

10 area = get affected area(M, scans) // convex hull or polygon
11 foreach cell cell ∈ area do

12 celldist =
√

(cell.x− Plocal.x)2 + (cell.y − Plocal.y)2

13 cellangle = atan2(cell.y − Plocal.y, cell.x− Plocal.x)
14 near beams = list of i where |cellangle − angles[i]| < α

2
15 if near beams list is not empty then
16 scandist = min(distances[near beams])
17 if celldist < scandist − w then
18 M [c] −= log oddfree
19 else if celldist ≤ scandist then
20 M [c] += log oddocc
21 else
22 nearest beam = arg min

i
(|cella − angles[i]|)

23 if celldist < distances[nearest beam] then
24 M [c] −= log oddfree

TABLE II
OCCUPANCY GRID MAPPING ALGORITHMS

Criteria Elfes [16] Thrun
[43]

Ours

Inverse sensor model accuracy Low High High
Incremental composition speed Slow Fast Fast

Uses unreflected beams information No No Yes
Memory utilization Low Low High

Map transformation speed Low Low High

A. OGM Vehicle Positioning

Using a global grid map is convenient for robotics applica-
tions in a controlled area [28]. But for a high-speed driving
vehicle, it is not a convenient option due to limited memory
and the irrelevance of old locations. Regardless of how big
the memory storage is, eventually the vehicle will leave the
map boundaries. Hence, a common approach is to use a local
map that moves with the ego-vehicle. However, this introduces
major computational burdens, namely rotation and sub-pixel
shifting of the grids to compensate for ego-vehicle motion.

Fig. 6. Comparison between considering the full scan affected area as the
scan points convex hull or bounding polygon. The areas in orange color are
considered ”free” or as ”no info” in case of the convex hull and the polygon-
based methods respectively.

Sub-pixel shifting is required because the vehicle motion is
not necessarily a multiple of grid cell size. Additionally, both
operations lead to discretization errors and create accumulated
artifacts that lower the overall map quality.

In this work, we introduce a new method of vehicle posi-
tioning, inspired by a part of our patent in [23], that allows
for more accurate and computationally efficient OGM by
avoiding rotation and sub-pixel shifting operations. Map sub-
pixel shifting is avoided by moving the ego-vehicle within the
map by the non-integer part of the required shifting, while
rotation is avoided by keeping the map orientation fixed to
some global coordinate system and rotating the ego-vehicle
itself. The latter approach requires a square map. Yet in high-
speed scenarios such as driving on a highway, the autonomous
driving function is more interested in the environment in front
of the vehicle. In turn, the square map reserves a lot of
memory for regions of low interest if the vehicle is centered
in the map. Our solution to this limitation is to grant even
more freedom to the location of the ego-vehicle as shown
in figure 7. The key idea is to locate the sensor vehicle on
a circle with its orientation orthogonal to the circle tangent.
The circle center itself is located in the square map center.
The size (radius) of the circle and the angle on which the
ego-vehicle is placed on it are determined by the speed and
the rotation of the vehicle (yaw angle) respectively. Our
algorithm is described in Algorithm 2. Initially: P 0

l = Pc,
P 0
w = P 1

w, and M is a matrix filled with identical values of the
average of PFree and POcc to represent no prior occupancy
information. At each full scan OGM update iteration t, the
algorithm is executed to compensate for ego-vehicle motion,
and afterwards, OGM Algorithm 1 is executed. The shift down
and shift left functions shift up and right if they received
negative shift values respectively.

Our algorithm is a utility that can be used to position the
vehicle within grid maps, regardless of the algorithm used to
build these maps. It’s a pure map alignment method that saves
computational time by avoiding image rotation and sub-pixel
shifting. At the same time, it results in more accurate grid maps
by avoiding approximations resulted from such two operations.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

Fig. 7. Position vehicle within OGM on a circle

Algorithm 2: OGM vehicle on a circle algorithm

Input: st: vehicle speed
P tw: vehicle position in world coordinates
P t−1
w : previous vehicle position in world coordinates
P t−1
l : previous vehicle position in OGM
Mt−1: OGM to be updated

Output: P tl : vehicle position in OGM
Mt : updated OGM

1 Pc = get position circle(P tw.yaw, st)
2 P tl .yaw = P tw.yaw

// Shift map by shift value integer part
3 Pshift = P tw − P

t−1
w + P t−1

l − Pc
4 Mt = shift down Mt−1 by bPshift.yc
5 Mt = shift left Mt by bPshift.xc

// Shift local position by the shift value fractional part
6 P tl .x = Pc.x+ {Pshift.x}
7 P tl .y = Pc.y + {Pshift.y}

On the other hand, the algorithm allows adopting smaller grid
map sizes, and hence, less memory consumption and better
real-time performance. Because it utilizes a higher proportion
of the local map space for important areas based on vehicle
movement trajectory. Our method remains compatible with
existing efficient map management techniques of representing
map cells in terms of 2D ring buffers [41] or twisted torus
topology [29].

V. ROAD BLOCKAGES AVOIDANCE

A. Global Route Planner

We adopt a topological global route planning algorithm
that is similar to the one used in [12] and [14]. The imple-
mentation logic is upgraded to provide more accurate high-
level navigational commands C and to execute faster. As in
Algorithm 3, a command from four possibilities of turn left,
turn right, go straight, and follow lane is returned based on
the vehicle destination GPS coordinates and orientation which
defines the arrival lane, using the vehicle GPS and compass.
As in [12], the planning is carried out on a one-way roads
grid map for simplicity and to make planning faster; the A*
search algorithm is carried out after setting the map cell after
the destination and the cell behind the vehicle as occupied,
i.e.; putting ’walls’. In the route planner in [12], the A*
algorithm is executed to re-evaluate the shortest path towards

the destination every time the vehicle travels to a new map
cell.

Algorithm 3: Global Route planner algorithm

Input: roads: list of town roads, a road is represented by the GPS
coordinates of its start and end
car gps: vehicle GPS coordinates
car compass: vehicle orientation in the world
dest gps: GPS coordinates of the desired destination
dest orient: the destination orientation (defines the desired
arrival lane)
ogm: OGM with vehicle position in it

Parameters: res: planning map resolution, the output command is
constant within a cell
far inters: number of map cells to the nearest
intersection to decide it is far away
inter exited: number of cells away from a visited
intersection to decide the vehicle left it

Output: C: a high level navigational command, used by driving
model

// Initializing global variables
1 if algorithm called for first time then
2 world graph = directed weighted graph(roads) // A node

for each roads intersection, weights are road distances
3 intersects = list of nodes in world graph with edges > 2
4 map = grid map(world graph, res) // a one-way roads map

where graph nodes are connected via road free cells and all
the other cells are marked as walls

5 map = add destination wall(map, gps to cell(dest gps),
dest orient) // add a wall in the cell after the destination
position to plan to arrive in the desired lane

6 prev cell, next = None & route exited = False

7 car cell, dest cell = gps to map cell(car gps, dest gps)
8 if car cell = dest cell AND car compass = dest orient then
9 return GOAL REACHED

10 if prev cell 6= None AND car cell 6= prev cell then
11 dist = route distance(route, car cell, route[next])
12 if dist ≤ 1 then
13 prev cell = car cell & next += dist

14 else route exited = True // if car cell is not on route

// Re-estimate route when needed
15 map, road blocked = road blockages(map, route, ogm) // Run

Algorithm 4 to detect road blockages
16 if road blocked OR route exited OR prev cell = None then
17 road blocked, route exited = False &

prev cell = car cell
18 map = add car wall(map, car cell, car compass) // add a

wall in the cell behind the car current cell
19 route = a star(map, car cell, dest cell) // A* from car cell

to dest cell
20 next = 1 // cell after vehicle cell index in route
21 cmds = list of route.count length and ′Follow Lane′ values
22 for i from 0 to route.count do
23 if route[i] is in intersects then
24 s = normalized cross product(

−−−−−−−−−−−−−−→
route[i], route[i+ 1],

−−−−−−−−−−−−−−→
route[i− 1], route[i])

25 if s < −0.1 then cmd =′ Go Right′

26 else if s > 0.1 then cmd =′ Go Left′

27 else cmd =′ Go Straight′

28 cmds[i− far inters : i+ inter exited] = cmd

29 for i from 0 to route.count do
30 if route[i] = car cell then
31 C = cmds[i] & break

Our planner is different from the planner in [12] in two
respects. Firstly, we make the process faster by executing the
A* algorithm only when the vehicle exits the latest planned
shortest path towards the destination or when detecting a road

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

blockage along the path. This is more similar to the global
route planner in [40] that is carried out at each checkpoint or
when facing a road blockage. Secondly, and more importantly,
our algorithm provides more accurate commands around road
intersections than [12] as shown in the sample in figure
8(a). Figure 8 shows two sample snapshots for the algorithm
during deployment from different towns. In sample 8(a), our
planner returns a ”follow lane” navigational command, while
the planner adopted in [12] returns a ”go left” navigational
command too early. In step 15 in Algorithm 3, the function
road blockages executes Algorithm 4 to check if the planned
road ahead has any blockages. The function adds walls to the
planning map corresponding to detected road blockages. As
discussed later in subsection V-B, the added walls are directed;
the A* search algorithm decides whether a cell with a directed
wall is blocked or free to traverse based on the direction of
reaching it from previous cells.

(b)

(a)

Fig. 8. Two sample snapshots for the proposed global route planning during
deployment. The front-facing camera image, the world map, and the planning
map are shown for each snapshot. The town in sample 8(b) is larger in
area. In sample (a) snapshot, our planner returns a ”follow lane” navigational
command, while the planner adopted in [12] and [14] returns a ”go left”
navigational command too early which causes the vehicle to invade the
opposite lane. In sample (b), both planners return a ”go left” command.

B. OGM-based Road Blockages Avoidance

We updated CARLA simulator to support the insertion of
road blockages programmatically as shown in the samples in
Figure 1. Algorithm 4 describes our method to avoid road
blockages based on OGM that is inspired by a part of our
patent in [22]. The algorithm is called by the global route
planner Algorithm 3. The inputs are the planning map, an
ordered list of planning map cell coordinates of the route
towards the destination, and the OGM along with its asso-
ciated vehicle position information. The cell coordinates are
projected and shifted to the lanes’ center and are used as
control points that are up-sampled and smoothed with a Bezier
curve. The OGM is queried for occupancy by the Bezier
curve points based on thresholds, if occupancy is detected
along the curve, the flag road blocked is set to True and
the planning map is updated by adding the blocked cell, so

Algorithm 4: Road blockages avoidance algorithm

Input: planning map: global route planning map
route: ordered list of planner route cells
ogm: OGM with vehicle position in it

Parameters: route pts: the number of cells in route to consider
Pocc: OGM occupied cell probability threshold
w: the width and height of the OGM slice around a
waypoint
cell occupied pts: minimum number of OGM
occupied cells to block a planning map cell

Output: planning map: planning map updated with added walls
if road blockages detected
road blocked: a flag set to True if a road blockage is
detected

1 route = route[0 : route pts] & road blocked = False
2 prev cell = route[0] // route[0] is vehicle cell
3 route lane = shift to lane(cell to gps(route)) // Project to

nearest point middle of the road then shift car lane lane center
4 waypoints = smooth with bezier(route lane) // Up-sampled

Bezier curve defined by route lane control points
5 waypoints ogm = gps to ogm(waypoints, ogm)
6 foreach cell c ∈ route[1 : end] do
7 points = list of points in waypoints ogm located inside c
8 occ = 0
9 foreach point p ∈ points do

10 OGMs = slice in ogm of width and height w around p
11 occ += number of cells in OGMs with value > Pocc
12 if occ > cell occupied pts then
13 blockage direction = get direction(c, prev cell)
14 planning map =

add directed wall(planning map, c, blockage direction)
15 road blocked = True & break

16 prev cell = c

the global route planner calculates a new route that avoids
the detected road blockage and consequently provides the
appropriate navigational commands to the model to avoid the
blockage. In case of a false positive, the global planner will
cause the vehicle to unnecessarily choose a longer route to
reach the destination.

The walls added to the planning map due to detected road
blockages are directed. The get direction function calculates
the direction from four possibilities of right, up, left, and
down from the cell that should have the added wall to its
preceding cell in route. The route planner decides whether
the cell with a directed wall is blocked or free to traverse
based on the direction of reaching it. The concept of directed
walls enables handling partial road blockages where a single
lane is occupied while the other lanes could be free to navigate
while at the same time leveraging the advantages of planning
on a one-way roads map. Figure 1 shows examples for such
partial blockages. The workaround of removing the added
walls after the vehicle leaves its area, when blockages become
irrelevant, instead of having walls directed causes the problem
of having the vehicles infinitely looping the same course in
some situations as described in Figure 9 scenario. The A*
search algorithm was set to prioritize fewer turns when having
multiple shortest paths having the same Manhattan distance.

The algorithm considers only the near future waypoints
through the parameter route pts, to save computational power
that might be wasted beyond the information in the OGM due
to the limited LiDAR range. If route pts is set too small, the
global planner will detect road blockages too late for the model

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

to be able to avoid them. The OGM history effect makes it
more accurate in near ranges from the vehicle, hence adding
walls in cells farther away from the vehicle should be made
less likely by making the involved thresholds function of the
distance from the vehicle. In addition, based on the OGM
and the ego-vehicle current position and speed, a simple rule-
based method is employed which determines if the ego-vehicle
should slightly reduce or increase the model predicted steering
angle to avoid collision with static obstacles. Given the vehicle
wheel radius and base, a kinematic bicycle model is utilized
to estimate the vehicle position and orientation in near-term
future frames. As shown in figure 9 OGM’s, the motion model
estimates discrete (five in the figure example) vehicle states
within three seconds in the future. The discrete trajectory is
equidistantly resampled and smoothed giving dense points, and
the points within a predefined short distance threshold from
the vehicle are considered (named rectified trajectory in the
figure). The OGM is queried for being free along the rectified
trajectory points. If any points along the trajectory are not free,
the steering angle is gradually increased or decreased within a
small range until all the trajectory points become possibly free
in the OGM. Such steering rectification method is especially
useful when the road blockages’ visual elements are not well-
represented in the model training data.

2

3

1 Blocked
Lane

Blocked
Lane

Fig. 9. Three snapshots from a navigation scenario demonstrating the road
blockages avoidance method. In the first snapshot, a blockage is detected,
and in the second snapshot, the planner successfully re-routes the vehicle to
avoid it. If the blockage added wall is directed, the vehicle continues along
the route following the blue arrow in the third snapshot route planning map
to reach the destination. If the added wall is removed once the vehicle leaves
its area, the vehicle will stuck in the navigation loop indicated by the green
arrow in case that the shortest path towards the destination is re-evaluated.

VI. EXPERIMENTAL RESULTS

We adopt the experimental setup of the CARLA urban
driving benchmark [14] to evaluate the proposed model. The
benchmark is composed of four different tasks that are carried
out in two towns and six weather conditions. The test town
and weather conditions are fully unseen during training. For
each combination of a task, a town, and a weather set, testing
is conducted over 25 different test scenarios having predefined
start and destination locations, this gives a total of 1200 test
scenarios for each model under test as described in table
III for one town. In the benchmark, each test scenario in
the ’Dynamic Navigation’ (navigation in traffic) task has 50
pedestrians moving in the driving town and 20 or 15 vehicles
for towns 1 and 2 respectively. The parameters for the PID
controllers we used during training data recording are tuned in
the training town and weathers. Town 1 and 2 have 2.9 km and
1.9 km of drivable two-lane roads in a suburban environment
respectively. Both towns include 3-way intersections; 7 and 12
intersections in towns 1 and 2 respectively and do not contain
roundabouts.

A test scenario is considered successful if the vehicle
reaches the destination within a predetermined deadline. The
deadline (maximum allowed time to reach the destination)
is set to the time needed to reach the destination along the
shortest route at a low speed of 10 km/h as followed in
[14] and [10]. A model driving at that low speed has low
chances to succeed in a test scenario as it has not to stop due
to traffic (for the ‘Dynamic Navigation’ tasks) or red lights
nor to slow down to avoid collisions, while at the same time
it has to estimate and follow the shortest route towards the
destination without missing a single turn. In addition, such
a low-speed deadline allows models that drive at higher, and
more reasonable, speeds to succeed in a test scenario even if
the shortest route is not followed. The proposed model average
vehicle speed over all the benchmark test scenarios was 25.428
km/h compared to 18.697 km/h for the pre-trained model in
[12]. The actual vehicle speeds while moving are higher than
those two numbers as the averaging includes traffic stopping
moments.

A. Success Rate and Distance to Destination

Table IV benchmarks the proposed model before and after
LiDAR fusion with the state-of-the-art CIL model [12] on the
CARLA urban driving benchmark [14]. The table reports the
autonomous driving success rate on different tasks and test
conditions, and the average percentage of distance to goal
traveled is available between parentheses. The latter metric

TABLE III
IN EACH TOWN IN THE CARLA URBAN DRIVING BENCHMARK [14], THERE ARE 24 EXPERIMENT SETS. EACH SET HAS 25 TEST SCENARIOS (1200 IN

TOTAL) REPRESENTING A COMBINATION OF A DRIVING TASK AND A WEATHER CONDITION. ”S”, ”O”, ”N”, AND ”DN” STAND FOR ”STRAIGHT”, ”ONE
(SINGLE) TURN”, ”NAVIGATION”, AND ”DYNAMIC NAVIGATION (ALONG MOVING VEHICLES AND PEDESTRIANS) ” TASKS RESPECTIVELY.

Experiment ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Task S O N DN S O N DN S O N DN S O N DN S O N DN S O N DN

Weather
Condition

Clear Afternoon
(Train)

Wet Noon
(Train)

Wet Cloudy Noon
(Test)

Hard Rain Noon
(Train)

Clear Sunset
(Train)

Soft Rain Sunset
(Test)

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

TABLE IV
DRIVING SUCCESS RATE AVERAGE PERCENTAGE, AVERAGE PERCENTAGE OF DISTANCE TO GOAL TRAVELLED IS BETWEEN PARENTHESES

Task Model
Percentages of average success rate and distance to goal

Training town New town
Training weathers New weathers Training weathers New weathers

Straight

Camera only, [14] results 95 (-) 98 (-) 97 (-) 80 (-)
Camera only, [14] pre-trained 99 (97.24) 100 (100.00) 89 (90.38) 92 (92.70)

Camera only (trained on our data) 100 (100.00) 100 (100.00) 99 (95.74) 100 (100.00)
Camera only (trained on our data, no augmentation) 93 (91.46) 88 (87.06) 88 (87.67) 86 (85.71)

Camera + LiDAR 100 (100.00) 100 (100.00) 100 (100.00) 100 (100.00)
Camera + LiDAR (Our Route Planner) 100 (100.00) 100 (100.00) 100 (100.00) 100 (100.00)

Single
Turn

Camera only, [14] results 89 (-) 90 (-) 59 (-) 48 (-)
Camera only, [14] pre-trained 88 (82.71) 94 (85.49) 56 (54.81) 74 (60.60)

Camera only (trained on our data) 97 (97.33) 98 (97.72) 57 (56.09) 72 (67.18)
Camera only (trained on our data, no augmentation) 73 (67.29) 72 (65.91) 49 (43.27) 56 (52.57)

Camera + LiDAR 100 (100.00) 100 (100.00) 92 (90.05) 92 (91.52)
Camera + LiDAR (Our Route Planner) 100 (100.00) 100 (100.00) 92 (88.17) 92 (88.17)

Navigation

Camera only, [14] results 86 (-) 84 (-) 40 (-) 44 (-)
Camera only, [14] pre-trained 78 (88.61) 84 (89.34) 35 (9.68) 58 (45.37)

Camera only (trained on our data) 87 (91.13) 88 (92.46) 33 (16.92) 34 (16.93)
Camera only (trained on our data, no augmentation) 65 (64.86) 66 (69.06) 28 (15.02) 25 (14.75)

Camera + LiDAR 92 (92.70) 92 (92.71) 68 (76.95) 68 (76.86)
Camera + LiDAR (Our Route Planner) 96 (96.02) 96 (96.04) 100 (100.00) 100 (100.00)

Dynamic
Navigation

Camera only, [14] results 83 (-) 82 (-) 38 (-) 42 (-)
Camera only, [14] pre-trained 80 (88.36) 74 (81.53) 28 (17.35) 54 (35.13)

Camera only (trained on our data) 84 (91.03) 82 (87.34) 26 (9.53) 30 (29.41)
Camera only (trained on our data, no augmentation) 58 (59.53) 58 (61.41) 24 (11.72) 23 (12.07)

Camera + LiDAR 86 (93.02) 86 (92.89) 53 (37.51) 64 (59.90)
Camera + LiDAR (Our Route Planner) 94 (98.16) 96 (98.59) 89 (80.88) 88 (77.80)

provides additional insight that cannot be inferred from the
success rate. It is not included in the original benchmark, thus
we include the results we record from deploying the publicly
available CIL pre-trained model. The table includes an ablated
model trained without data augmentation.

Table IV benchmark results for the pre-trained model in
[14] (”Camera only, [14] pre-trained” model) are correlated
to the results reported in [14] (”Camera only, [14] results”
model), but are not matching exactly. These discrepancies
are due to randomness in evaluation and difference in texture
appearance compared to the earlier version of CARLA used
in the [14]. Additionally, there are two known sources of
non-determinism: 1) textures loading time is not deterministic
in the underlying game engine which leads to appearance
differences, and 2) the simulator pedestrians algorithms are
non-deterministic. The third model in the table (”Camera
only (trained on our data)”) trains the same original CIL
model from scratch on our dataset. The results are correlated
with the preceding two models (”Camera only, ”[14] results”
and ”Camera only, ”[14] pre-trained”), but are less accurate
especially in the harder tasks and environmental setups, and
the problem of generalization is more apparent. That model
is trained on our dataset which is automatically collected as
detailed in subsection III, while the preceding two models are
trained on data collected by a human driver. The ablated model
trained without data augmentation performs worst compared
to the other models which aligns with the conclusion in [12]
that careful data augmentation is crucial for generalization
even within the training town. The last two models in the
table (”Camera + LiDAR” and ”Camera + LiDAR (Our Route
Planner)”) are also trained on our automatically-collected
dataset.

The proposed model (”Camera + LiDAR” model) results
demonstrate that it performs significantly better than the CIL
model [12] in every task and environmental setup combination,
even while it is trained on driving data recorded automatically.
Both models use the same global route planner algorithm in
[14] and [12]. The learned driving policy consistency against
varying weather conditions is improved by 3.91 times, as
the average (per task and town) success rate difference due
to changing from weathers seen during training to unseen
weathers becomes 1.375%, while it is 5.375% in case of
the ”Camera only, [14] results” model. On the hardest task
of ”Dynamic Navigation”, the autonomous driving success
rate is improved by 52% when deployed on the new town
and weathers that are unseen during training; the success rate
improved from 42% to 64%. Succeeding in those ”Dynamic
Navigation” test scenarios requires responding to traffic lights.
The model is able to recognize and respond to traffic lights
as situations involving traffic lights are part of the training
data. When our new global route planner is adopted instead,
performance is further improved. The autonomous driving
success rate is improved by 37%; the success rate improved
from 64% to 88%. Figure 8 shows two example snapshots
showing the global route planner during deployment. In the
first example in figure 8(a), our planner returns a ”follow
lane” navigational command, while the planner adopted in
[12] returns a faulty ”go left” command causing the vehicle
to invade the opposite lane and crash with other vehicles.

B. Infractions Analysis

In table V, we report the average number of kilometers
traveled before an infraction for each model on the ”Dynamic
Navigation” task test scenarios, the higher the numbers the

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

TABLE V
THE AVERAGE NUMBER OF KILOMETRES TRAVELED BEFORE AN INFRACTION

Infractions Model
Average kilometres traveled before an infraction
Training town New town

Training weather New weathers Training weather New weathers

Collision
to a

Pedestrian

Camera only, [14] pre-trained 7.15 19.48 0.99 2.18
Camera only (trained on our data) 6.08 5.32 1.49 3.14

Camera + LiDAR 60.96 15.76 25.01 12.60
Camera + LiDAR (Our Route Planner) 62.02 18.79 25.50 16.15

Collision
to a

Vehicle

Camera only, [14] pre-trained 1.35 0.89 0.18 0.17
Camera only (trained on our data) 1.59 1.33 0.44 0.70

Camera + LiDAR 1.13 1.09 0.51 0.84
Camera + LiDAR (Our Route Planner) 1.36 1.20 1.83 2.02

Collision
to a

Static Object

Camera only, [14] pre-trained 5.50 5.56 0.29 0.85
Camera only (trained on our data) 5.15 2.66 0.26 0.33

Camera + LiDAR 3.05 3.15 0.54 0.90
Camera + LiDAR (Our Route Planner) 3.94 3.70 1.03 1.24

Going
Outside
of Road

Camera only, [14] pre-trained 14.30 12.98 0.45 0.90
Camera only (trained on our data) 11.15 7.97 0.59 0.79

Camera + LiDAR 10.16 10.50 0.96 1.57
Camera + LiDAR (Our Route Planner) 64.04 32.37 2.75 3.23

Invading the
Opposite Lane

Camera only, [14] pre-trained 4.77 9.74 0.51 1.69
Camera only (trained on our data) 13.38 15.95 0.77 0.90

Camera + LiDAR 8.71 10.50 0.93 1.05
Camera + LiDAR (Our Route Planner) 21.35 32.37 11.00 16.15

Violating Traffic Light Camera + LiDAR (Our Route Planner) 57.43 53.05 32.88 28.92

better. For the majority of infractions types, the proposed
model performed better than the other models especially in the
new town unseen during training, which emphasizes the gen-
eralization improvement achieved by our model. The model
is demonstrated to avoid both dynamic (pedestrian and other
vehicles) and static objects. The improvement margin is further
increased when our global route planner is adopted. Figure
8(a) shows an example justifying the significant improvement
in the rates of invading the opposite lane and going outside
the road when using the proposed global route planner. Models
trained on data that include situations involving traffic lights
are observed to achieve good results on responding to traffic
lights. Overall, the infractions analysis is a strong indicator
that further progress is still required to produce reliable and
safe autonomous driving.

C. Road Blockages Avoidance Benchmark

Figure 10 shows sample real-world and simulation results
for our proposed OGM method, with the vehicle position
circle shown in yellow. For the real-world results, Valeo ScaLa
first-generation LiDAR [45] is used, which is the first laser
scanner for automotive volume production. The figure shows
two examples out of hours of testing. The laser scanner data for
both of the two examples are recorded in Stuttgart, Germany.
The first sample is for urban city driving and the second
one is for high-way driving. Practically, we found that the
get affected area operation is around five times faster using
the convex hull option on average. But the number of grid cells
to update is around 2.37 times larger for such an option, which
makes it overall around 1.5 times slower than the polygon
option. The figure also shows two sample OGM results on
CARLA simulator along with the corresponding RGB camera
image. In Algorithm 1, log oddocc and log oddfree are tuned

in the training town and set to 0.9 and 0.7 respectively. The
resolution is set to 0.5 meters, w is set to 1 meter, and α is
set to 2◦. The samples shown in figure 10(b) are from the test
town demonstrating generalization to new environments. The
used 360-degree LiDAR has 32 layers, a vertical field of view
from −30◦ to 10◦, and a 150 meters range. CARLA LiDAR
does not model beam echoes and their pulse width which are
not required by our proposed PGV and OGM representations.

(a)

Speed = 20.7 km/h

Speed = 15.3 km/h

(b)

Fig. 10. Sample real-world and simulation results for our OGM method with
the vehicle position circle shown in yellow. (a) Real-world results on urban
and highway driving scenarios. (b) Results from CARLA simulator along with
the corresponding RGB camera image.

The CARLA urban driving benchmark [14] hardest tasks
of navigation and dynamic navigation are adapted to test road
blockages avoidance. CARLA simulator is upgraded to sup-
port adding random road blockages by following two criteria.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

Firstly, each experiment in the benchmark has at least one
road blockage and up to five along the shortest route towards
the destination. The number of blockages is sampled from
a uniform distribution. Secondly, in 50% of the benchmark
experiments, there is at least one blockage that mandates
dynamically changing the route to reach the destination. In the
other 50% of the experiments, the road blockages along the
route are partial and do not require rerouting, as an example
for being in another lane. For the dynamic navigation task, the
simulator autopilot logic is overridden to prevent other vehicles
and pedestrians from colliding or being stuck in road block-
ages. The involved thresholds in the road blockages avoidance
algorithm are tuned in the training town. In Algorithm 3, the
parameters res, far inters, inter exited are set empirically
to 8.215 meters (as in [12]), 4 cells, and 1 cell respectively.
In Algorithm 4, route pts is set empirically to 5 cells given
the used res value in Algorithm 3, while the used OGM
width and height are set to 80 meters and the resolution is
set to 0.5 meters. The chosen values of those parameters are
demonstrated to detect road blockages at around 60 meters
ahead in most of the cases as in the examples in figures 9 and
11. The OGM quality, which is directly affected by the weather
conditions [46], and occupancy confidence are the main factors
determining the blockage detection range. In adverse weather
conditions, the range is found reduced to around 30 meters.

Table VI reports the autonomous driving success rates with
and without using the proposed road blockages avoidance
method, and against the state-of-the-art CIL model [12]. The
road blockages avoidance algorithm improved the driving
success rate by 27% on the average over all the benchmark
tasks and conditions. Table VII reports the average number
of kilometers traveled before a collision to a static object
on the different condition for the hardest task of ”Dynamic
Navigation”. The table confirms that the introduced road
blockage algorithm significantly reduced infractions with static
objects. The average kilometers traveled before a collision to
a static object increased by more than 1.5 times.

TABLE VI
ROAD BLOCKAGES AVOIDANCE BENCHMARK: DRIVING SUCCESS RATE

AVERAGE PERCENTAGE

Task Model
Percentages of average success rate

Training town New town
Training
weathers

New
weathers

Training
weathers

New
weathers

Navigation

Camera model in [14] 56 50 32 40
Camera+LiDAR Model 56 56 44 44

Camera+LiDAR Model,
with road blockages

avoidance
94 96 72 74

Dynamic
Navigation

Camera model in [14] 55 48 29 32
Camera+LiDAR Model 49 50 45 44

Camera+LiDAR Model,
with road blockages

avoidance
79 78 57 56

Figure 11 shows an example scenario for our system during
deployment in the test town. The ego-vehicle detects two road
blockages and dynamically estimates and follows new routes
to eventually reach the designation successfully. On average

TABLE VII
ROAD BLOCKAGES AVOIDANCE BENCHMARK: THE AVERAGE NUMBER OF

KILOMETRES TRAVELED BEFORE A COLLISION TO A STATIC OBJECT

Model

Average kilometres traveled
before an infraction

Training town New town
Training
weather

New
weathers

Training
weather

New
weathers

Camera model in [14] 0.58 0.56 0.29 0.27
Camera+LiDAR Model 0.6 0.55 0.32 0.34

Camera+LiDAR Model,
with road blockages avoidance 2.05 1.73 0.69 0.52

2

3

4

1

Fig. 11. Snapshots from an example test scenario for the proposed system
during deployment in a new town unseen during training. (A) shows the
moment a road blockage is detected, then immediately after the vehicle is
guided to follow another route to reach the destination as in (B). (C) shows
another road blockage detected, and (D) shows that trajectory the vehicle
followed by avoiding the two road blockages towards the destination to
eventually arrive successfully.

over all the benchmark test scenarios, the overhead of adding
the LiDAR to the system, including the PGV and the OGM
processing and increasing the model size due to adding the
LiDAR input modality, increases the overall system runtime
by 68.83%.

VII. CONCLUSION

We proposed a model that extends the state-of-the-art con-
ditional imitation learning method by fusing a LiDAR sensor
input with the camera aiming to tackle the challenges of lack
of generalization and inconsistency against varying weather
conditions. Additionally, we introduced a new efficient Oc-
cupancy Grid Mapping method that improves runtime perfor-
mance, memory utilization, and map accuracy. The OGM is
used to upgrade the conditional imitation learning method to
dynamically detect partial and full road blockages and guides
the controlled vehicle to another route to reach the destination.
On CARLA simulator urban driving benchmark, camera and
LiDAR fusion is demonstrated to improve weather consistency
by around four times. The model has shown to significantly
improve the autonomous driving success rate and average
distance traveled towards the destination on all the driving

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 13

tasks and environments combinations while being trained
on automatically recorded data. The generalization to new
environments in terms of driving success rate has improved
by 52%. The infractions analysis showed improvement as well
but overall indicates that further progress is still required to
produce reliable and safe autonomous driving.

The global route planner provided more accurate navi-
gational commands and improved the driving success rate
further by 37%. CARLA benchmark is upgraded to allow test
navigation while having unexpected temporary stationary road
blockages. Our road blockages avoidance algorithm improved
the driving success rate by 27% and the average kilometers
traveled before a collision to a static object increased by more
than 1.5 times.

In future work, we need to investigate the proposed model’s
capability to drive on multi-lane roads and through round-
abouts. In addition, knowing whether the generalization issue
is caused more by the different road layout or the different
environment domains and textures can guide to further im-
prove the model generalization. Moreover, the PGV allows
standard CNN to achieve real-time performance; however,
the discretization errors can be mitigated by adopting sparse
convolution which requires studying the speed-accuracy trade-
off.

REFERENCES

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39,
no. 12, pp. 2481–2495, 2017.

[2] M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst,” arXiv preprint
arXiv:1812.03079, 2018.

[3] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings. IEEE, 2014, pp. 420–425.

[4] M. Bojarski et al., “End to end learning for self-driving cars,” arXiv
preprint arXiv:1604.07316, 2016.

[5] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural network trained
with end-to-end learning steers a car,” arXiv preprint arXiv:1704.07911,
2017.

[6] A. Brown, B. Repac, and J. Gonder, “Autonomous vehicles have a wide
range of possible energy impacts,” NREL, University of Maryland, Tech.
Rep., 2013.

[7] P. Cai, Y. Sun, Y. Chen, and M. Liu, “Vision-based trajectory planning
via imitation learning for autonomous vehicles,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). IEEE, 2019.

[8] M.-F. Chang et al., “Argoverse: 3d tracking and forecasting with rich
maps,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8748–8757.

[9] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[10] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,”
in Conference on Robot Learning. PMLR, 2020, pp. 66–75.

[11] R. Cheng, R. Razani, Y. Ren, and L. Bingbing, “S3net: 3d lidar sparse se-
mantic segmentation network,” arXiv preprint arXiv:2103.08745, 2021.

[12] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[13] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor, vol.
1001, no. 48105, pp. 18–80, 2008.

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv preprint arXiv:1711.03938,
2017.

[15] M. Dupuis, M. Strobl, and H. Grezlikowski, “Opendrive 2010 and
beyond–status and future of the de facto standard for the description of
road networks,” in Proc. of the Driving Simulation Conference Europe,
2010, pp. 231–242.

[16] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[17] H. M. Eraqi, Y. Abouelnaga, M. H. Saad, and M. N. Moustafa, “Driver
distraction identification with an ensemble of convolutional neural
networks,” Journal of Advanced Transportation, vol. 2019, 2019.

[18] H. M. Eraqi, Y. E. Eldin, and M. N. Moustafa, “Reactive collision
avoidance using evolutionary neural networks,” in Proceedings of the 8th
International Joint Conference on Computational Intelligence - Volume
1: ECTA, (IJCCI 2016), INSTICC. SciTePress, 2016, pp. 251–257.

[19] H. M. Eraqi, J. Honer, and S. Zuther, “Static free space detection
with laser scanner using occupancy grid maps authors,” in IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC),
Yokohama, Japan, October 2017.

[20] H. M. Eraqi, M. N. Moustafa, and J. Honer, “End-to-end deep learning
for steering autonomous vehicles considering temporal dependencies,”
in Machine Learning for Intelligent Transportation Systems, 31st Con-
ference on Neural Information Processing Systems (NIPS), 2017.

[21] H. M. Eraqi and I. Sobh, “Autonomous driving in the face of unconven-
tional odds,” Communications of the ACM, vol. 64, no. 4, pp. 64–66,
2021.

[22] H. M. Eraqi, “Occupancy grid mapping-based route planning for work
zones avoidance in autonomous driving,” December 9 2020, patent
Number EP20212769.

[23] H. M. Eraqi and J. Honer, “Resource-saving map for a driver assistance
system of a motor vehicle (ressourcensparende karte für ein fahreras-
sistenzsystem eines kraftfahrzeugs),” May 17 2018, patent Number
DE102016122031A1.

[24] L. Fridman et al., “Mit advanced vehicle technology study: Large-
scale naturalistic driving study of driver behavior and interaction with
automation,” IEEE Access, vol. 7, pp. 102 021–102 038, 2019.

[25] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[26] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–3361.

[27] German Ros, Vladlen Koltun, Felipe Codevilla, and Antonio M. Lopez,
“Carla autonomous driving challenge 2019 results,” 2019. [Online].
Available: https://carlachallenge.org/results-challenge-2019/

[28] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling,” in Proceedings of the 2005 IEEE international conference
on robotics and automation. IEEE, 2005, pp. 2432–2437.

[29] A. Guanella, D. Kiper, and P. Verschure, “A model of grid cells based
on a twisted torus topology,” International journal of neural systems,
vol. 17, no. 04, pp. 231–240, 2007.

[30] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[31] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for
autonomous vehicles: Problems, datasets and state-of-the-art,” arXiv
preprint arXiv:1704.05519, 2017.

[32] M. Jokela, M. Kutila, and P. Pyykönen, “Testing and validation of
automotive point-cloud sensors in adverse weather conditions,” Applied
Sciences, vol. 9, no. 11, p. 2341, 2019.

[33] A. B. Jung et al., “imgaug,” 2020, online; accessed 01-Feb-2020.
[Online]. Available: https://github.com/aleju/imgaug

[34] J. Jung, E. Che, M. J. Olsen, and C. Parrish, “Efficient and robust lane
marking extraction from mobile lidar point clouds,” ISPRS journal of
photogrammetry and remote sensing, vol. 147, pp. 1–18, 2019.

[35] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi,
“Probabilistic vehicle trajectory prediction over occupancy grid map via
recurrent neural network,” in 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2017, pp. 399–404.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] G. K. Kraetzschmar, G. P. Gassull, K. Uhl, G. Pags, and G. K.
Uhl, “Probabilistic quadtrees for variable-resolution mapping of large
environments,” in Proceedings of the 5th IFAC/EURON symposium on
intelligent autonomous vehicles. July, 2004, pp. 1–6.

[38] C. Li, D. Song, R. Tong, and M. Tang, “Illumination-aware faster r-
cnn for robust multispectral pedestrian detection,” Pattern Recognition,
vol. 85, pp. 161–171, 2019.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 14

[39] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, 2013,
p. 3.

[40] M. Montemerlo et al., “Junior: The stanford entry in the urban chal-
lenge,” Journal of field Robotics, vol. 25, no. 9, pp. 569–597, 2008.

[41] M. Nieuwenhuisen, D. Droeschel, M. Beul, and S. Behnke, “Obstacle
detection and navigation planning for autonomous micro aerial vehicles,”
in 2014 international conference on unmanned aircraft systems (ICUAS).
IEEE, 2014, pp. 1040–1047.

[42] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt,
and M. Mayr, “Lanelet2: A high-definition map framework for the
future of automated driving,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 1672–1679.

[43] S. Thrun, “Learning occupancy grids with forward models,” in Proceed-
ings 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 3. IEEE, 2001, pp. 1676–1681.

[44] ——, “Probabilistic robotics,” Communications of the ACM, vol. 45,
no. 3, pp. 52–57, 2002.

[45] Valeo, “Valeo Scala,” 2020, https://www.valeo.com/en/valeo-scala/, ac-
cessed 2020-02-02.

[46] A. M. Wallace, A. Halimi, and G. S. Buller, “Full waveform lidar for
adverse weather conditions,” IEEE transactions on vehicular technology,
vol. 69, no. 7, pp. 7064–7077, 2020.

[47] WHO, “Global status report on road safety 2018,”
World Health Organization, 2018. [Online]. Available:
https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-
eng.pdf

[48] S. Wirges, T. Fischer, C. Stiller, and J. B. Frias, “Object detection
and classification in occupancy grid maps using deep convolutional
networks,” in 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC). IEEE, 2018, pp. 3530–3535.

[49] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 2174–
2182.

[50] H. Yang, K. Ozbay, O. Ozturk, and K. Xie, “Work zone safety anal-
ysis and modeling: a state-of-the-art review,” Traffic injury prevention,
vol. 16, no. 4, pp. 387–396, 2015.

[51] X. Zhou, Y. Gao, and L. Guan, “Towards goal-directed navigation
through combining learning based global and local planners,” Sensors,
vol. 19, no. 1, p. 176, 2019.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3214079

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

